

Microsoft Tube Latent Directions: A Simple Pathway to Bias Mitigation in Generative Al Carolina López Olmos, Alexandros Neophytou, Sunando Sengupta, Dim P. Papadopoulos

Problem: lack of diversity + biased generations

According to Stable Diffusion ...

Today's text-to-image models leverage stereotypes. In this work we propose a simple novel technique to achieve debiased generations without prompt modification or embedding alteration.

Understanding biases

To mitigate certain biases we first need to understand if and why they are present in our image generations.

IF: Detecting social characteristics and objects in the images.

 $\omega = 10$

We use a SVM classifier to linearly separate the latents across our labeled dataset. From it we obtain a latent direction, which we apply together with a neutral prompt to obtain debiased generations.

Tuning: Selecting the optimal weight and latent

The choice of weight has a higher impact on the debiasing than the choice of latent. Two approaches to find the optimal configuration: → *clean-fid*: similarity between debiased images and small subset for every configuration. → CLIP as a zero-shot classifier within the configurations.

 $\omega = 15$

Decute

NESUILS								
d_Z	Skin Tone		Gender			Landbird	Indian	Wealth
P_1	Man	Woman	Doctor	Firefighter	Cleaner	Waterbird	Wedding	African man
(SD XL, ours)	0.87	0.78	0.52	0.08	0.09	-	0.33	0.28
(SD 2.1, PD [1])	0.91	0.90	0.14	0.06	0.01	0.29	0.79	0.47
(SD 2.1, ours + PD [1])	0.94	1.00	0.29	0.04	0.22	0.68	1.00	0.96

Table 1. Quantitative results with Statistical Parity Difference after debiasing. PD¹[Prompt Debiasing] 1 - Chuang et al. "Debiasing Vision-Language Models via Biased Prompts." arXiv (2023).

- embeddings and a neutral prompt.
- scenarios.

"A photo of a man"

"A photo of a woman"

• It is possible to alter biased relations such as those in cultural events while maintaining unaltered

• The application of latent directions achieves successful results debiasing diverse and complex

"A photo of a doctor"

"A picture of a wedding"