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Problem: lack of diversity + biased generations

Understanding biases

Method: Learning and applying latent directions 

Today’s text-to-image models leverage stereotypes. 
In this work we propose a simple novel technique to achieve debiased 
generations without prompt modification or embedding alteration. 

Results
    The prompts generate N images & their latents are saved for training

The latent direction is applied to the latent noise with a weight

To mitigate certain biases we first need to understand if and why they 
are present in our image generations. 

WHY: Comprehending the connections between embeddings and generations.

IF: Detecting social characteristics and objects in the images.

The choice of weight has a higher impact on the debiasing than the 
choice of latent. Two approaches to find the optimal configuration:

We use a SVM classifier to linearly separate the latents across our 
labeled dataset. From it we obtain a latent direction, which we apply 
together with a neutral prompt to obtain debiased generations.

latent direction is learned

A photo of a black man

A photo of a man

A photo of doctor

A photo of doctor

ω＝10 ω＝15

Table 1. Quantitative results with Statistical Parity Difference after debiasing. 
PD [Prompt Debiasing]

1

● It is possible to alter biased relations such as those in cultural events while maintaining unaltered 
embeddings and a neutral prompt. 

● The application of latent directions achieves successful results debiasing diverse and complex 
scenarios.

Combining latent directions Combining debiasing methods

A photo of doctor

Latent directions can leverage embedding 
alteration (PD) to obtain more effective debiasing.
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woman latent direction | L25 ω10
 

combined directions | woman + dark-skin | L25 ω10 + L10 ω10 

dark-skin latent direction | L10 ω10
 

original

prompt debiasing  

latent direction | L10 ω6
 

combined methods | prompt debiasing + L10 ω10 

Compute Cosine Similarity
(concept, attribute)

1 - Chuang et al. "Debiasing Vision-Language Models via Biased Prompts." arXiv (2023). 

➔ clean-fid: similarity between debiased images and small subset for every configuration. 
➔ CLIP as a zero-shot classifier within the configurations.
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e.g. Concept: A wealthy African man and his house


