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Abstract

Mitigating biases in generative AI and, particularly in
text-to-image models, is of high importance given their
growing implications in society. The biased datasets used
for training pose challenges in ensuring the responsible de-
velopment of these models, and mitigation through hard
prompting or embedding alteration, are the most common
present solutions. Our work introduces a novel approach
to achieve diverse and inclusive synthetic images by learn-
ing a direction in the latent space and solely modifying the
initial Gaussian noise provided for the diffusion process.
Maintaining a neutral prompt and untouched embeddings,
this approach successfully adapts to diverse debiasing sce-
narios, such as geographical biases. Moreover, our work
proves it is possible to linearly combine these learned la-
tent directions to introduce new mitigations, and if desired,
integrate it with text embedding adjustments. Furthermore,
text-to-image models lack transparency for assessing bias
in outputs, unless visually inspected. Thus, we provide a
tool to empower developers to select their desired concepts
to mitigate. The project page with code is available online1.

1. Introduction
Text-to-image models have enabled the possibility of gen-
erating personalized images with the content described by
words, transforming industries, and even, our thoughts.
Given these models’ impact on our lives, it is key to guar-
antee they are developed responsibly, battling stereotypes
[16, 25], lack of diversity, and inherited biases, but remain-
ing truthful [22]. Moreover, if this biased generated data is
used for training future models, these biases will persist or
be amplified in the new models themselves.

From gender to race, to poor geographic representa-
tion, biases can be found everywhere in generative mod-
els. Leonardo N. and Dina B. [16] have found a concern-
ing pattern in Stable Diffusion v1.5 where low-paying jobs
are dominated by women and darker-skinned individuals.

1https://latent- debiasing- directions.compute.
dtu.dk/

Figure 1. Debiasing diverse concepts. Generations observed
upon the application of our approach in several scenarios.

While most of the work focuses on social and racial bi-
ases [4, 27], Basu et al. [2] conduct a user study validating
geographical biases in models like DALLE [21] and Sta-
ble Diffusion [23], finding underrepresented 25 out of 27
countries. Cultural biases are also found when using ho-
moglyphs in text-to-image synthesis [15]. Efforts to under-
stand biases in vision-language models lead to the develop-
ment of automated tools [6, 14], the use of gender estima-
tion [13], face and skin tone detection [5, 9], and the evalu-
ation of geographical representativeness using CLIP-based
similarity and k-nearest neighbor models [2]. Mitigation ef-
forts include prompt interventions [1], the development of
more inclusive datasets featuring images reflecting diverse
geographic and socioeconomic contexts [11, 20], and alter-
ations in prompt embedding strategies [7, 28]. Chuang et al.
[7] propose a method to mitigate bias by maximizing the
similarity between biased and non-biased prompts. They

https://latent-debiasing-directions.compute.dtu.dk/
https://latent-debiasing-directions.compute.dtu.dk/


construct a projection matrix to eliminate biased directions
from text embeddings before inputting them into the model.
Using a similar approach, but employing tokens of available
image datasets, ITI-Gen [28] learns a set of prompt embed-
dings to append to the initial prompt.

We first present a tool to enhance developers’ visibil-
ity, given that we believe understanding the relationship be-
tween concepts, and the reason for certain attributes appear-
ing in generations, is key to mitigating them. Secondly, we
propose a straightforward novel approach for bias mitiga-
tion, linearly separating the latents, noisy information ten-
sors of two different prompts, learning the transformation
for debiasing in the latent space of the diffusion model.

We apply this transformation, named latent direction,
at a specific weight, linearly combining it with the initial
Gaussian noise. The results in a series of diverse exper-
iments prove it successfully works to debias, without the
need for prompt alteration. Our approach remains simple,
while effective and adaptable to varied scenarios. It allows
the synergy of different latent directions, and it is flexible
to be used in combination with an approach modifying the
prompt embeddings if desired. Through our experiments,
we focus on demonstrating the impact of our method for the
maximum debiasing transition. However, fair distributions2

can be obtained when applying the learned latent direction
to only a determined percentage of the generations.

2. A Tool for Bias Understanding

Our tool for bias understanding targets two key points: com-
prehending the connections between embeddings and gen-
erations, and detecting the social characteristics and objects
presented in the image. Theoretically, the closer the rela-
tion between attribute and concept in the semantic space,
the more prone these attributes are to appear in the gener-
ated images. We explain the semantic relationship between
attributes and concepts by computing the cosine similarity
of their embeddings, and comprehending the innate biases
within the employed text and vision encoders. In addition,
we reveal the visual components of the generated images,
using CLIP [19] as a zero-shot classifier for gender and race,
and Kosmos-2 [18] as a Multimodal Large Language Model
(MLLM) for perceiving object descriptions from the visual
output seen in the images. With this, we present the fre-
quency of objects and social characteristics in the genera-
tions, validate if the embedding associations correspond to
the visualized content, and provide an understanding of the
results without seeing the images. For instance, Fig. 2 in-
forms us that our generations are debiased, with men in suits
in front of their houses. However, it presents the innate bi-
ases of CLIP’s text and vision encoders in Stable Diffusion

2Distribution of the generations selected by the user with ethical, truth-
ful, and responsible considerations in mind.

Figure 2. Example of automated tool output. Analysis of 100
generations of the concept C across 50 attributes A. (1) Frequency
count of visual components across the images. (2, 4) Top 15 at-
tributes exhibiting the highest cosine similarity (C,A) across text
and vision encoders. (3) Gender and race detections.

2.1 where despite using the prompt ”A wealthy African man
and his house” the highest embedding similarities belong to
attributes such as poverty-stricken or underprivileged.

3. Our Proposed Method for Bias Mitigation
Training: Finding the Latent Direction Our approach
(Fig. 3) proposes a fundamentally different transformation
of the diffusion process’s input, learning the latent direction
dZ , from the Gaussian latents at denoised steps, to condition
the initial noisy information tensor fed into the diffusion
process zT ∼ N (0, I). Given a pre-trained latent diffusion
model (LDM) and a neutral prompt P1 (e.g., ”a photo of
a man, in color, realistic, 8k”), we aim to obtain debiased
generations in the absence of prompt modifications or em-
beddings alterations. We propose a ’target’ prompt P2 (e.g.,
”a photo of a black man, in color, realistic, 8k”) and sam-
ple N number of images, for both P1 and P2, to construct
the training dataset. The diffusion process for each of the
prompts starts from an initial noisy latent zT , which is de-
noised over k steps, finally reaching the ultimate latent z,
fed into the decoder D to generate the synthetic image x̃.

While generating the N images, we save each image’s
latents at chosen denoising steps L = (L0, · · · , Lk), repre-
senting (zT , · · · , zT−i for i ∈ {0, 1, 2, . . . , k} ), building a
dataset of noisy information tensors. Note, L0 corresponds
to the initial Gaussian latent zT , while Lk is z. Once all
chosen latents are saved for both prompts, we select one de-
noising step i to obtain dZ with those specific latents. For
instance, we could decide to train with L10, the latents saved
for the N images at step 10 (zT−10).
The model. We use a support vector machine (SVM) [26]



Figure 3. Summary of our training (left) and inference (right) approach. We use P1 and P2 to generate N images x̃. With their latents,
chosen at step i, we train a SVM to learn dZ . We debias the neutral prompt P1, applying dZ to the random initial latent zT ∼ N(µ, σ2)
at a specific ω weight, shifting the generations towards debiased samples with the attributes learned through the latent direction.

to linearly separate the latents across our labeled dataset of
N samples for each prompt. The classifier uses a linear
kernel and provides the dZ , the so-called latent direction,
we utilize for debiasing.
Inference: Applying the Latent Direction. To obtain de-
biased generations, the LDM, in our case Stable Diffusion
[23], uses for inference only P1, the neutral prompt. This
prompt is fed into CLIP’s text encoder E forming the first
input. As the second one, instead of using an initial Gaus-
sian random information tensor for denoising, we transform
this latent by applying the learned latent direction dZ , fol-
lowing equation 1.

zT = zT + ω · dZ (1)

Where zT ∼ N(µ, σ2) and ω is the weight parameter at
which the latent direction is applied. The higher the ω, the
higher the strength of the debiasing impact.
The optimal configuration. Optimal debiasing results
are found when selecting the most favorable latent L =
(L0, · · · , Lk) and weight configuration ω. Thus, we pro-
pose two approaches to automatically find it without having
to visually explore all possibilities. The first one is to use
the clean-fid [17] library to compute the similarity between
the distribution of a small subset of generated images with
a particular configuration, and the distribution of known de-
biased images, and the second one is to leverage CLIP [19]
as a zero-shot classifier, selecting the configuration with a
high classification of the desired debiased class.

4. Experimental Results
We validate our work using Stable Diffusion XL [23], with
50 denoising steps, applying different latent directions dZ in
a series of experiments to understand its impact. Success-
ful results are obtained in diverse mitigations. We present
four different debiasing scenarios following the settings of
previous papers [7, 10, 12, 28], addressing social group bi-
ases, cultural and geographical biases, and the Waterbird

[24] benchmark for evaluating spurious correlations. Fig. 1
summarizes the experimental results obtained.
Quantitative Metrics. We leverage the Statistical Parity
Difference (SPD) [8] to evaluate our debiasing method in
the generated image datasets. We use CLIP for attribute
prediction and measure the absolute difference in the pro-
portions of desired attributes between the original biased
dataset, generated with the plain Stable Diffusion model,
and the debiased dataset. A value close to zero indicates
minimal debiasing impact, while a value of one signifies
successful debiasing with the desired attribute present in all
generations.
Gender debiasing in professions. We learn dZ by defining
N = 50, P1 =”a photo of a man, in color, realistic, 8k” and
P2 =”a photo of a woman, in color, realistic, 8k”, selecting
L25 and ω = 10. We apply the woman latent direction to
the neutral prompts “a photo of a [profession], in color, re-
alistic, 8k” and observe a positive shift from 0% to 52%, in
100 generations for the case of ”doctor”. Other professions
known to be extremely biased, such as firefighter, engineer,
or librarian have shown a slightly improved impact, with
shifts of 8%, 3%, and 2%, respectively. We believe major
debiasing can be achieved with these professions upon find-
ing the optimal dZ .
Skin tone debiasing. We explore the transition of skin
tones in generated images. For it, we create four train-
ing datasets, where N = 50, with P1 =”a photo of a
[man/woman], in color, realistic, 8k” and P2 =”a photo of
a black [man/woman], in color, realistic, 8k.”. With the pro-
posed automated method for configuration selection we set-
tle on training with the latents at step 10 (L10), at a weight
ω = 15. The results shift 100 generations using the neutral
prompt P1 =”a photo of a man, in color, realistic, 8k” to
contain a 95% of black men images from the original 8%.
Similarly, with P1 =”a photo of a woman, in color, real-
istic, 8k” and the application of the dark-skin dZ at L25,
ω = 14 yields a 79% of black women from an initial 1%.
Waterbird debiasing. In this experiment we evaluate the



dZ Skin Tone Gender Landbird Indian Wealth
P1 Man Woman Doctor Firefighter Cleaner Waterbird Wedding African man
(SD XL, ours) 0.87 0.78 0.52 0.08 0.09 - 0.33 0.28
(SD 2.1, PD [7]) 0.91 0.90 0.14 0.06 0.01 0.29 0.79 0.47
(SD 2.1, ours + PD [7]) 0.94 1.00 0.29 0.04 0.22 0.68 1.00 0.96

Table 1. Quantitative results across 100 generations. SPD in the presence3of the desired attributes: dark skin tone, female gender
for the case of doctor, firefighter and male gender for cleaner, land environments for waterbirds, Indian wedding attributes and wealthier
looking houses avoiding thatched roofs and mud huts. We learn the latent directions with SD 2.1 for the results seen in the last row.

impact of the combination of methods, manipulating both
the prompt’s embeddings [7] and the initial Gaussian noise,
using Stable Diffusion 2.1. We aim to generate waterbirds
in land environments with the prompt P1 = ”A picture of a
waterbird”. We replicate their setup and apply our learned
latent direction (P1 = ”A picture of a waterbird”, P2 = ”A
picture of a landbird”, ω = 10, L10). The results across
100 generations yield exceptional results with 78% of gen-
erations displaying waterbirds in terrestrial habitats, 2% in
aquatic landscapes, and 20% showing bird portraits.
Geographical representativeness. It is hard to obtain bal-
anced geographical representations of ”a picture of a wed-
ding, in color, realistic, 8k”, given this neutral prompt is
normally biased towards representations of Western wed-
dings. In an attempt to shift the distribution towards Indian
weddings, we define P1 =”a picture of a wedding, in color,
realistic, 8k” and P2 =”a picture of a wedding in India, in
color, realistic, 8k”, learning dZ using L30 and applying it
with ω = 35 we see an increment of 33% in CLIP’s classi-
fication. Inspired by Bianchi et al. [3] we debias 38% of the
thatched roofs observed when using P1=”A wealthy African
man and his house”, utilizing P2=”A wealthy man and his
house” and applying the learned wealthy man direction dZ
at L10 and ω = 15.
Comparison with PD. In Tab. 1, we present the quantita-
tive results of our study. The comparison with the Prompt
Debiasing (PD) method [7] is challenging, due to the uti-
lization of distinct models and the diverse biases in them,
e.g., for P1 =”A wealthy African man and his house” SD
XL presents generations of mansions with thatched roofs,
whereas SD 2.1 shows mud huts. We choose to use SD XL
given the enhanced quality of the model facilitates the learn-
ing of dZ and minimizes the inconveniences of elaborated
hard prompting to obtain quality images with SD 2.1. The
outcomes evaluated through our experiments demonstrate
the potential of latent directions to obtain competitive debi-
ased generations despite maintaining neutral embeddings.

4.1. Relevant Insights and Learnings

The integration of prompt debiasing and latent directions
surpasses the efficacy of the former used individually
(Tab. 1). Regarding our approach, the results in Fig. 4 con-
firm the choice of weight ω has a higher impact on the debi-

Figure 4. Comparison of results with dZ trained at different
latents L and applied at different weights ω. Generations of the
same woman in its transition to dark skin.

asing than the choice of training latent L. Moreover, higher
latent directions require lower weights to achieve the de-
biased results, given more structured noise is found at the
higher debiasing steps. However, as we move in dZ there
is a limit to how far we go with ω, given an extremely high
weight leads to distorted generations, out of the distribu-
tion. Lastly, it is possible to linearly combine latent direc-
tions following zT = zT +

∑∞
i=1 ωi · dZi. For instance,

by applying the woman [L25 ω10] and dark-skin [L10 ω10]
latent directions to the Gaussian noise of the neutral prompt
P1 =“a photo of a doctor, in color, realistic, 8k” we achieve
generations of dark-skinned female doctors (Fig. 1).

5. Conclusion
After proposing a tool for uncovering and quantifying the
present bias in text-to-image models, a novel method is pro-
posed for mitigation. By learning and applying latent direc-
tions dZ we demonstrate it is possible to alter the diverse
complex biased relations, such as those in cultural events,
while maintaining unaltered neutral prompt embeddings.
Future work encourages the exploration of more advanced
classifiers to find the optimal dZ .

3Presence of classes through CLIP’s classification: [”A picture of a
black [man/woman]”, ”A picture of a white [man/woman]”], [”A picture
of a woman”, ”A picture of a man”], [”A picture of a Western wedding”,
”A picture of an Indian wedding”]. A user study is used to evaluate the
complex generations (Wedding, African man) given classification with de-
fined classes in these cases does not match reality.



References
[1] Hritik Bansal, Da Yin, Masoud Monajatipoor, and Kai-Wei

Chang. How well can text-to-image generative models un-
derstand ethical natural language interventions?, 2022. 1

[2] Abhipsa Basu, R. Venkatesh Babu, and Danish Pruthi. In-
specting the geographical representativeness of images from
text-to-image models, 2023. 1

[3] Federico Bianchi, Pratyusha Kalluri, Esin Durmus, Faisal
Ladhak, Myra Cheng, Debora Nozza, Tatsunori Hashimoto,
Dan Jurafsky, James Zou, and Aylin Caliskan. Easily acces-
sible text-to-image generation amplifies demographic stereo-
types at large scale. In 2023 ACM Conference on Fairness,
Accountability, and Transparency. ACM, 2023. 4

[4] Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh
Saligrama, and Adam Kalai. Man is to computer program-
mer as woman is to homemaker? debiasing word embed-
dings, 2016. 1

[5] Adrian Bulat and Georgios Tzimiropoulos. How far are we
from solving the 2d & 3d face alignment problem? (and a
dataset of 230,000 3d facial landmarks). In 2017 IEEE In-
ternational Conference on Computer Vision (ICCV). IEEE,
2017. 1

[6] Jaemin Cho, Abhay Zala, and Mohit Bansal. Dall-eval:
Probing the reasoning skills and social biases of text-to-
image generation models, 2023. 1

[7] Ching-Yao Chuang, Varun Jampani, Yuanzhen Li, Antonio
Torralba, and Stefanie Jegelka. Debiasing vision-language
models via biased prompts, 2023. 1, 3, 4

[8] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Rein-
gold, and Rich Zemel. Fairness through awareness, 2011.
3

[9] Haiwen Feng, Timo Bolkart, Joachim Tesch, Michael J.
Black, and Victoria Abrevaya. Towards racially unbiased
skin tone estimation via scene disambiguation, 2022. 1

[10] Felix Friedrich, Manuel Brack, Lukas Struppek, Dominik
Hintersdorf, Patrick Schramowski, Sasha Luccioni, and
Kristian Kersting. Fair diffusion: Instructing text-to-image
generation models on fairness, 2023. 3

[11] William Gaviria Rojas, Sudnya Diamos, Keertan Kini, David
Kanter, Vijay Janapa Reddi, and Cody Coleman. The dollar
street dataset: Images representing the geographic and so-
cioeconomic diversity of the world. In Advances in Neural
Information Processing Systems, pages 12979–12990. Cur-
ran Associates, Inc., 2022. 1

[12] Niharika Jain, Alberto Olmo, Sailik Sengupta, Lydia
Manikonda, and Subbarao Kambhampati. Imperfect ima-
ganation: Implications of gans exacerbating biases on facial
data augmentation and snapchat selfie lenses, 2021. 3

[13] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models, 2023. 1

[14] Alexandra Sasha Luccioni, Christopher Akiki, Margaret
Mitchell, and Yacine Jernite. Stable bias: Analyzing soci-
etal representations in diffusion models, 2023. 1

[15] Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. Exploiting
similarities among languages for machine translation, 2013.
1

[16] Leonardo Nicoletti and Dina Bass. Humans are biased. gen-
erative ai is even worse. 2023. Accessed: 2023-09-10. 1

[17] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On
aliased resizing and surprising subtleties in gan evaluation,
2022. 3

[18] Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan
Huang, Shuming Ma, and Furu Wei. Kosmos-2: Grounding
multimodal large language models to the world, 2023. 2

[19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021. 2, 3

[20] Vikram V. Ramaswamy, Sing Yu Lin, Dora Zhao, Aaron B.
Adcock, Laurens van der Maaten, Deepti Ghadiyaram, and
Olga Russakovsky. Geode: a geographically diverse evalua-
tion dataset for object recognition, 2023. 1

[21] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation, 2021. 1

[22] Adi Robertson. Google’s ai model gemini criticized for gen-
erating historically inaccurate images. The Verge, 2024. 1

[23] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2022. 1, 3

[24] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and
Percy Liang. Distributionally robust neural networks for
group shifts: On the importance of regularization for worst-
case generalization, 2020. 3

[25] Irene Solbes-Canales, Susana Valverde-Montesino, and
Pablo Herranz-Hernández. Socialization of gender stereo-
types related to attributes and professions among young
spanish school-aged children. Frontiers in Psychology, 11,
2020. 1

[26] V. N. Vapnik and A. Ya. Chervonenkis. On the Uniform Con-
vergence of Relative Frequencies of Events to Their Prob-
abilities, pages 11–30. Springer International Publishing,
2015. 2

[27] Depeng Xu, Shuhan Yuan, Lu Zhang, and Xintao Wu. Fair-
gan: Fairness-aware generative adversarial networks, 2018.
1

[28] Cheng Zhang, Xuanbai Chen, Siqi Chai, Chen Henry Wu,
Dmitry Lagun, Thabo Beeler, and Fernando De la Torre. Iti-
gen: Inclusive text-to-image generation, 2023. 1, 2, 3


	. Introduction
	. A Tool for Bias Understanding
	. Our Proposed Method for Bias Mitigation
	. Experimental Results
	. Relevant Insights and Learnings

	. Conclusion

